If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-28m+13=0
a = 3; b = -28; c = +13;
Δ = b2-4ac
Δ = -282-4·3·13
Δ = 628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{628}=\sqrt{4*157}=\sqrt{4}*\sqrt{157}=2\sqrt{157}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{157}}{2*3}=\frac{28-2\sqrt{157}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{157}}{2*3}=\frac{28+2\sqrt{157}}{6} $
| 2x^2=2x+60 | | x/3+3/4=-5 | | 6−4 | | 3x+62=x+26 | | 6−4 | | -9j-4=-8j+3 | | 4x+61=x+26 | | 16+n=19 | | 4x-14=45 | | 153=17n | | 3(3+a)=64 | | -4x-7+3x+4=20 | | 4^3x+8=16^2x | | 15w-14=2w+28 | | 15x+5(x+2)=5(x-3) | | z/8+7=-60 | | 9=2x +2 | | 1.15x+14=31.25 | | 5.42+6.44+4.5p=3.4p+2.18 | | -8=-6+u | | 7k2+9k= | | 24=2/8x+12 | | 23x+53+58=180 | | h+10,5=-10.5 | | 10x^2+25x+10=0 | | (3w-5)+(w+25)=180 | | Y=-1/3x2 | | (17x-20)=59 | | z/6+2=-29 | | 15x+34+56=180 | | (-72)÷8x3+(-15)=42 | | Nx4=96 |